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The flow in a channel with its lower wall mounted with streamwise riblets is 
simulated using a highly efficient spectral element-Fourier method. The range of 
Reynolds numbers investigated is 500 to 3500, which corresponds to laminar, 
transitional, and turbulent flow states. A complete study is presented for V-groove 
riblets; the effect of rounded riblets is also investigated. Our results suggest that in 
the laminar regime there is no drag reduction, while in the transitional and turbulent 
regimes drag reduction exists (approximately 6 % at Reynolds number 3500) for the 
riblet-mounted wall in comparison with the smooth wall of the channel. For the first 
time, we present detailed turbulent statistics (turbulence intensities, Reynolds shear 
stresses, skewness and flatness) as well as a temporal analysis using a numerical 
analog of the VITA technique. The flow structure over the riblet-mounted wall is also 
analysed in some detail and compared with the corresponding flow over the smooth 
wall in an attempt to identify the physical mechanisms that cause drag reduction. 
The accuracy of the computation is established by comparing flow quantities 
corresponding to the smooth wall with previous direct numerical simulation results 
as well as with experimental results; on the riblet-mounted wall comparison is made 
with available experimental results. The agreement is very good for both cases. The 
current computation is the first direct numerical simulation of turbulence in a 
complex geometry domain. 

1. Introduction 
In  recent years, turbulent boundary-layer drag reduction has become an important 

area of fluid dynamics research. Rising fuel costs in the 1970s greatly emphasized the 
usefulness and necessity of developing efficient viscous drag reduction methods. 
Many classes of transport and other important applications stand to reap great 
rewards from the successful application of viscous drag reduction techniques. Some 
examples are : commercial transport aircraft, high-speed aircraft and missiles, 
surface ships that operate a t  low Froude number, submarines and other underwater 
bodies, and long distance pipelines. 

I n  the search for viscous drag reduction, many different techniques have been 
developed and investigated (Bushnell & Hefner 1990; Coustols & Savill 1992; Falco, 
Klewicki & Pan 1989; Kline & Robinson 1989; Smith & Metzler 1983; Tsinober 1989; 
Walker et al. 1987). Some examples that may be categorized as active techniques are : 
boundary-layer suction or wall heating to delay transition, modification of the fluid 
viscosity by injection of polymers or changing the fluid temperature, the use of 
compliant walls, and active wave control of boundary-layer transition. Other 
examples that can be considered passive techniques are natural laminar flow control 
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(pressure-gradient/wall shaping), and modification of outer flow structures with 
devices such as ‘large eddy breakup devices’ (LEBUs). One of the more interesting 
techniques is the drag reduction method involving the use of ‘riblets’. Riblets are 
micro-grooves on the bounding surface that are aligned with the mean flow direction ; 
this method is particularly attractive due to its completely passive nature. It seems 
that the concept of using a grooved surface to reduce drag may have already been 
implemented in nature : the skin of some species of fast-swimming sharks have three- 
dimensional riblets on them as has been reported by Bechert, Bartenwerfer & Hoppe 
(1986) and Bushnell & Moore (1991). 

Riblets have been thoroughly investigated in the work of Bacher & Smith (1985), 
Bechert & Bartenwerfer (1989), Choi (1989), Coustols & Cousteix (1989), Djenidi et 
al. (1986), Gaudet (1987), Liu et al. (1989), Robinson (1989), Roon & Blackwelder 
(1989), Squire & Savill (1986), Tani (1988), VukoslavEevid, Wallace & Balint (1987), 
and Walsh (1990a) in recent years. A considerable amount of experimental data 
has been collected regarding the flow over various shapes, sizes, and spacings of 
riblets in the turbulent regime. Riblets were successfully employed in the 1987 
America’s Cup competition, and have already been tested at  flight conditions 
(Robert 1992; Robinson 1988; Walsh 1990b). It has been found that drag reduction 
on the order of 8 %  can be achieved for flow over a flat plate mounted with riblets, 
if the proper spacings and heights are used (Walsh 1990b). Walsh and co-workers at 
NASA Langley have performed extensive experiments on the effects of riblet shapes 
and dimensions, and conclude that the optimal shape may be that of the ‘shark-scale 
riblet’ (see also Bechert & Bartenwerfer 1989). This riblet, however, is difficult to 
machine ; the symmetric triangular riblet is therefore used in most experiments as the 
optimal drag-reducing riblet. This is the riblet shape we focus on in this study. 
VukoslavEeviB et al. (1987) have made careful, precise measurements of the velocity 
field and turbulence statistics over triangular riblets; our results in $4 show good 
agreement with these particular experimental results, among others. 

Although there has been a tremendous effort in the area of riblet research in recent 
years, most of the results obtained to date are experimental. There is a significant 
dearth of relevant numerical data (i.e. accurate turbulent flow riblet computations) 
to  complement and enhance the experimental findings. There have been some 
computations performed involving flow over riblets in the laminar regime (Djenidi et 
al. 1986 ; Choi, Moin & Kim 1991), and numerical simulations involving boundary- 
layer equations, but most of these assume that the flow inside the riblet valleys can 
be modelled as a steady laminar flow; we show in $4 that this is incorrect, since the 
flow is unsteady in the high Reynolds number regimes. Some turbulent flow 
computations have been performed by Khan (1986) and Launder & Savill(i988), but 
these simulations use parabolized equations (thus neglecting strong streamwise 
variations) and employ various turbulence models. Direct numerical simulations 
providing detailed information about the inner turbulent boundary-layer structure 
should prove useful in assessing the validity of various turbulence models for 
smooth/rough wall flows, and in helping to construct new turbulence models. 

As yet, no clear quantitative explanations of the turbulent drag mechanism(s) of 
riblets have been confirmed. More information about the structure of the flow near 
and in the riblet valleys is needed ; this can be reliably provided by careful numerical 
simulations. This need for a more complete investigation is what motivated this 
current research project ; a complete numerical study of the flow over riblets has been 
undertaken. The three-dimensional incompressible Navier-Stokes equations are 
solved via direct numerical simulation (DNS) using a spectral element-Fourier 
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method to investigate the laminar and turbulent regimes of the flow over riblet- 
mounted surfaces. Since DNS is employed without any turbulence models, only low 
Reynolds number turbulent flows are investigated in the present work. It is assumed 
that insight into the drag reduction mechanisms of riblets will still be provided at 
these Reynolds numbers, and that our results at  low Reynolds numbers will prove 
useful for future investigations at  higher Re in the turbulent regime. Experimental 
evidence by Walsh ( 1 9 9 0 ~ )  suggests that at  higher speeds the relative drag reduction 
is even higher. The results in $4 include, to the best of our knowledge, the first 
turbulence statistics reported in a three-dimensional, complex-geometry, Navier- 
Stokes direct numerical simulation. 

Section 2 will briefly outline the basic methodology and numerical formulation of 
the spectral element-Fourier method. It will also discuss convergence properties and 
provide a brief summary of the computational implementation and code per- 
formance. Section 3 discusses the computational domain, mesh resolution, and 
numerical procedures involving the transition to turbulence. Most of the results of 
this study are documented in $4: laminar flow results, turbulent mean flow 
properties, turbulence statistics, flow structure and physics, drag reduction, and 
comparisons in the laminar regime with rounded riblets are all included. We then 
conclude with a brief summary and discussion. 

2. Formulation and methodology 
2.1. Governing equations 

We consider the flow of incompressible Newtonian fluids governed by the 
Navier-Stokes equations of motion, 

where v ( x , t )  is the velocity field, p is the static pressure, p is the density, Re = 
[Wj H / v  is the Reynolds number, [Wl is the bulk streamwise velocity, His  a character- 
istic length, and v is the kinematic viscosity (see § 3.1 for more specific definitions of [m and H). Here D denotes the total derivative. We note now that our coordinate 
system is different from the standard system used in channel flow simulations: x is 
the streamwise direction, x is the spanwise direction, and y is the normal direction. 

We consider only flows for which the mean varies arbitrarily in the (2, y)-plane and 
remains unchanged along the third (2) direction. This assumption of z-homogeneity 
simplifies the formulation of the governing equations, since only the instantaneous 
flow needs to be represented along all three directions, whereas the geometry remains 
effectively two-dimensional. We employ spectral element discretizations in (x, y)- 
planes and spectral Fourier expansions along the x-direction, which is homogeneous 
(and thus periodic boundary conditions are required in x ) .  The use of Fourier 
expansions in one direction yields several significant advantages in our numerical 
implementations and leads naturally to an efficient mapping on a parallel computer 
(Chu, Henderson & Karniadakis 1992). 

After implementing the Fourier expansions, the dependent variables can be 
represented as follows : 
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where the z-direction wavenumber is defined as p = 2.rc/Lz, and is typically selected 
on the basis of experimental two-point correlation data. Here L, is the length of the 
computational box in the z-direction. 

Introducing the Fourier expansions (2) into ( la ) ,  ( l b )  and taking the Fourier 
transform (or equivalently, following a Galerkin projection with test functions +z = 
ePipmz), we arrive a t  the discrete-z equivalent of (1 a),  ( 1  b ) ,  

(3  a) 

V - v , = O  in B,. ( 3 b )  

-+FFT,[N(v)] avm = --++Re-l[V2 GP, -m2,Ll2] v, in a,, 
XY 

at P - 
The computational domain 9, is simply an x, y slice of the domain 52 ; therefore all 
the Q, are identical. Note that here FFT, is the mth component of the Fourier 
transform of the nonlinear terms (denoted by N(v)), and that we have introduced the 
operators t, and V&, which are defined as 

In order to sustain the flow, the momentum equation (1  a )  should include a non- 
zero pressure gradient in the prevailing direction of motion. In  practice, however, the 
pressure drop is an unknown quantity; this is especially true in complex geometry 
flows or turbulent flows. It is preferable, therefore, to sustain the fluid motion by 
imposing a volume (or mass) flow rate &(t).  This can be done efficiently by solving in 
a preprocessing stage for a Green’s function v* which satisfies the equations of motion 
for an equivalent Stokes flow that is driven by a unit pressure drop, 

which has an associated flow rate Q* = s, v: ds, where X is the cross-sectional area of 
B,, and the index 3 refers to the flow direction. At subsequent time steps, we then 
solve the homogeneous Navier-Stokes equations to obtain an intermediate flow field 
v? (with associated flow rate QH(t) = j, vf ds). The requisite non-dimensional 
forcing term Ap can now be calculated by requiring that the mass flow rate remain 
at a prescribed level, 

(6) = QH(t) + &*AP 
and therefore the final velocity field is given by, 

u = v?+v: Ap. (7) 
2.2. Numerical methodology 

In  this section we will present a brief description of the temporal and spatial 
discretization procedures of our numerical code. The spectral element-Fourier 
method has already been employed in similar codes, which have been used in three- 
dimensional transition studies ; see Karniadakis (1990) and references therein for 
details. Here, for completeness, we will summarize the main ideas in the numerical 
methodology. 
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The time discretization of the governing equations (3a ) ,  ( 3 b )  employs a high-order 
splitting algorithm based on mixed explicit-implicit stiffly stable schemes (Kar- 
niadakis, Israeli & Orszag 1991 ; Tomboulides, Israeli & Karniadakis 1989). This 
splitting algorithm has three major substeps. I n  the first step, which is explicit, the 
nonlinear terms obtained for each Fourier component are considered. The next 
substep incorporates the pressure equation and enforces the incompressibility 
constraint. Finally, the last substep includes the viscous corrections and the 
imposition of the boundary conditions. This temporal discretization results in a 
highly efficient calculation procedure, since it decouples the pressure and velocity 
equations. The stiffly stable time-splitting scheme is superior to the classical splitting 
scheme in a number of ways; through its new treatment of the pressure boundary 
condition, the so-called time-splitting errors that lead to non-zero divergence a t  
Dirichlet boundaries are eliminated (see Tomboulides et al. 1989 for details). 
Accuracy of order J in time (i.e. O(AP)) is provided (typically we use J = 3), in 
contrast to a classical splitting scheme where only first-order accuracy (O(At)) is 
achieved, irrespective of the integration schemes involved. The stiffly stable schemes 
also provide wider stability regions as compared to the more commonly used Adams 
family schemes (see Karniadakis et al. 1991). 

The spatial discretization of the governing equations is obtained using the spectral 
element method (Patera 1984 ; Karniadakis 1989, 1990). In  the standard spectral 
element discretization, the computational domain is broken up into several 
quadrilaterals in two dimensions (or general brick elements in three dimensions), 
which are mapped isoparametrically to canonical squares (or cubes). Field unknowns 
and data are then expressed as tensorial products in terms of Legendre-Lagrangian 
interpolants. The final system of equations to be solved is obtained via a Galerkin 
variational statement. For the current problem under consideration, a hybrid 
spectral element-Fourier discretization is used for efficiency, owing to the 
homogeneity of the geometry in the streamwise direction. In this case, two- 
dimensional spectral elements are used in (x, y)-planes and Fourier expansions are 
used in the z-direction. 

2.3. Code verification 
A Navier-Stokes solver was implemented using the aforementioned methodology 
and theory; it is based on direct solvers using a static condensation algorithm to 
achieve optimal efficiency and speed. Details of' the parallel and vectorized serial 
implementations are given in Chu et al. ( 1  992). We will now illustrate the convergence 
properties of the hybrid spectral element-Fourier method in the following verification 
test. 

The equation 
v2u =f, @a)  

(8 b)  
ePy. (8c) 

[l + 25007~~ cos2 ( 5 7 ~ ~ )  + 25On'sin (5nx)], f = e-10 sin (5xz) e-y with 
has the solution 

Equation (8a )  is solved in a two-dimensional x-y slice of the domain pictured in 
figure 1.  This domain is the actual triangular riblet geometry used in the 
Navier-Stokes computations ; details will be presented in $3.1. Dirichlet boundary 
conditions were used in this test. Figure 2 presents the L, and L,  errors of the 
velocity field as a function of the Norder employed. We see that spectral accuracy is 
achieved for this infinitely smooth solution ; exponential convergence rates are also 
obtained in the H ,  norm. We have also undertaken a detailed study to investigate the 
possibility of numerical problems arising from the geometrical sinyularities presented 

= e-10sin(5xs) 
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FIGURE 1. Geometry definition and skeleton of the spectral element mesh. 

A 

I 

A 

A 
a 

by the riblet tips. It is well known that the presence of a corner of an radians gives 
rise to solution with leading behaviour given by r'lasin (ol-9) where r ,  0 are the polar 
coordinates attached to the corner vertex. For the domain of interest here the 
strongest singularities are caused by the riblet tip where a = 1.704328 and thus 

breakdown of analyticity causes a slower convergence around the tip with the error 
in the H ,  norm decaying as O(W2Ia)  (Babuska & Suri 1987). This loss of accuracy 
locally can be treated either empirically by selective hep mesh refinement as is done 
here or by auxiliary mappings and singularity subtraction techniques as is explained 
in detail in Pathria & Karniadakis (work in progress). 

r0.58739. , velocity gradients therefore are unbounded exactly at  the tip. This 
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The accuracy of the spectral element-Fourier spatial discretization method in the 
context of the governing equations ( l a ) ,  ( i b )  was tested by solving for an exact 
solution of the three-dimensional incompressible Navier-Stokes equations. Spectral 
accuracy was maintained in the L, and H ,  norms; details are available in Chu et al. 
(1992). 

The computations in this study were performed on a Cray-YMP and on the Intel 
iPSC/SSO Hypercube at  Princeton University. We briefly review here the key points 
of the parallel implementation. In  the Intel Hypercube parallel environment, the 
Fourier decomposition (see (2)) results in some additional benefits. In the context of 
our temporal discretization, applying a Fourier decomposition in the homogeneous 
direction yields separate equations for each Fourier mode m with respect to the linear 
pressure and viscous equations. On a network of parallel processors, the com- 
putational domain may then be considered in three steps. In the first step, the 
domain is mapped in sheets of (y,x)-planes, within which FFTs are performed and 
nonlinear products computed with the processors utilized as a simple array network. 
During the second phase, the symmetries of the hypercube allow an efficient global 
transpose (complete exchange) of data across the network so that it arrives as z, y 
frames within processors, where each frame represents a single Fourier mode ; during 
the final phase, the spectral element solvers are applied and the solution is advanced 
to the next time step. On the Intel iPSC/SSO parallel supercomputer, the message 
passing system operates independently of the microprocessor, allowing an exchange 
to be initiated while continuing calculations in steps one and three. Thus, on a 
parallel machine, the final, most expensive step (calling the spectral element solvers) 
is effectively independent (in terms of required CPU time) of the number of Fourier 
modes employed. Essentially, for a given amount of CPU time, the number of modes 
is limited only by the number of processors available. 

3. Numerical simulation parameters 
3.1. Computational domains 

The basic geometry in which the incompressible Navier-Stokes equations (1  a ) ,  (1  b )  
were solved is depicted in figure 1,  along with the coordinate system. The boundary 
conditions are as follows: periodicity in the x (spanwise) and z (streamwise) 
directions, and no-slip (walls) in the y (normal) direction. The riblet wall is located 
at y = 0 (triangular riblet tips a t  y = 0.2), and the smooth wall is located at  y = 2.0. 
We have chosen a channel with one wall mounted with riblets rather than a flat plate 
mounted with riblets for a number of reasons. The channel geometry allows us to 
make simultaneous comparisons of the flow over the top (smooth) wall to the flow 
over the bottom (riblet) wall, thus eliminating the need to define quantities such as 
a virtual origin (Bechert & Bartenwerfer 1989), for flat-plate comparisons. 
Numerically, the periodic domain of the channel is much more accurate and easier 
to implement than the spatially evolving boundary layer over a flat plate. We also 
have the added advantages of using momentum balances to check some of the 
conserved global quantities. 

The dimensions of the computational domain were chosen based upon the 
following factors: (i) dimensions should be large enough to include the expected 
scales of the largest structures/eddies in the flow, (ii) examination of two-point 
correlation measurements to ensure that turbulent fluctuations are uncorrelated at  
separation distances of one half of the periodic length, and (iii) current (and 
changing) computational restrictions on memory requirements and CPU time. The 



8 D. C. Chu and G .  E .  Karniadakis 

dimensions of the riblets were chosen such that their dimensions in wall units (at the 
Reynolds numbers under investigation) would place them in the optimal drag 
reduction envelopes suggested by experimental studies, as reported by Walsh 
( 1 9 9 0 ~ )  and Walsh & Anders (1989). Ideally, one would like to have to consider only 
factors (i) and (ii) above. However, factor (iii) dictates that  we must settle for a 
‘compromise ’ between all three factors when choosing a computational domain. For 
this project, the following computational domain was used: streamwise length L, = 
5.0, spanwise length L, = 2.0, and normal length L, = 2.0. This domain has a 
spanwise wavenumber of p, = x, which is of the same order as the corresponding 
value of the most unstable modes in a smooth channel flow (Orszag & Patera 1983). 
At Re = 3500 (a turbulent case), these dimensions in non-dimensional units (based on 
the smooth-wall values) are roughly: L,+ = 271, Li  = 271, and L: = 677. The 
triangular riblets are symmetric V-grooves with height h = 0.2 and base s = 0.2 units 
in length. At Re = 3500, these dimensions correspond to approximately 17.1 viscous 
wall units (based on riblet wall values) ; there are 10 riblets across the span of the 
channel’s lower wall. 

The Reynolds number in equations (1  a), ( 1  b )  is defined as Re = [wj H / v ,  where [WJ 
is the bulk streamwise velocity, H is the channel height measured from the midpoint 
of the riblet to the upper wall, and u is the kinematic viscosity. The bulk streamwise 
velocity is defined here as 

where S is the cross-sectional area of the channel and the integration is performed 
over this area. H is measured from the riblet midpoint so that (i) i t  reflects an average 
value of the distance from the smooth wall to  the riblet wall and ( i i )  it  corresponds 
to the vertical coordinate origin most often chosen in the literature for data 
normalization purposes (Wallace & Balint 1987 ; VukoslavEeviB et al. 1987). For the 
triangular riblet domain depicted in figure I ,  H = 1.9. 

The early laminar and transitional results of this project were obtained in the 
computational domain defined above using the following resolutions : K = 80, 100 
(number of elements),N, = N, = 7 ,  N, = Nu = 9,M, = 8. These results were validated 
by simulating the same Reynolds numbers using higher resolutions in N,, N,, and 
M,  (up to N, = N,  = 15, M,  = 32); the turbulent regime calculations were then 
performed. Three different resolutions were tested for the turbulent runs. Each mesh 
employed the same N, = N, = 9 and number of Fourier modes M,  = 16 before de- 
aliasing; they differed only in the number of spectral elements used (more rows of 
elements were added near the walls to improve resolution of the turbulent boundary 
layers). The coarsest mesh ( M l )  used K = 100 elements, the medium mesh (M2) 
employed K = 120 elements, and the finest mesh (M3) used K = 160 elements. The 
x, y spectral element skeletons of these meshes are compared in figure 3. For the M2 
mesh, the grid spacings are as follows: in the z-direction 16 symmetric Fourier 
meshes were employed, corresponding to a streamwise wavenumber of p, = $, in the 
x-direction Axmin = 0.005, and in the y-direction Aymin = 0.005 (near the riblet wall). 
A t  Re = 3500, these grid spacings correspond to Ax& = 0.43 and Aykin = 0.42 in 
wall units. 

For some of the turbulent regime quantities, there were differences between the 
results obtained with mesh MI and those computed with mesh M2. There were 
smaller differences in the statistics results between the M2 mesh and M3 mesh 
resolutions. In  figure 4, we plot the Reynolds stress - p m  profiles across the 
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FIGURE 3. Comparison of the coarse M1 (100 elements), medium M2 (120 elements), 

and fine M3 (160 elements) meshes. 
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channel (riblet wall on the left, smooth wall on the right) from the M i  and M2 
discretizations. For the coarse mesh (Mi), we see that although the general profile 
shape and peak locations are fairly accurate, there are some slight differences. The 
riblet-wall peak value has been slightly underpredicted, and inadequate resolution 
near the smooth wall (1.6 < y < 2.0) has resulted in numerical oscillations. Because 
of these oscillations, on the coarse mesh even the sign of -pm is incorrect in 
the immediate vicinity of the smooth wall. The M2 discretization has an additional 
layer of elements placed near the smooth wall - this eliminates the oscillations and 
yields a smoother profile with the same general shape and peak values. The finest 
mesh (M3) has two additional layers (added to the medium mesh) of elements, one 
placed at  the riblet wall, the other placed a t  the smooth wall ; no significant changes 
resulted. 

Owing to the larger computational costs of the M3 mesh (33.7 Mwords on the Cray- 
YMP as compared to 25.3 Mwords for the M2 mesh, when run in core memory), the 
majority of the simulations and turbulence statistics calculations were obtained on 
the mesh corresponding to K = 120, N, = Ny = 9, and H, = 16. Unless otherwise 
noted, flow simulation results presented in the following sections correspond to this 
resolution. Higher (N,,N,) were used for some of the laminar regime test to examine 
non-uniform convergence near the riblet tips. Recent results using the same spectral 
element mesh with M ,  = 32 modes have shown small differences ; past channel flow 
computations (Kim, Moin & Moser 1987; Zores 1989) have demonstrated that the 
streamwise direction is the most ‘forgiving ’ in terms of resolution. Recent findings 
by Zores (1989) demonstrate that spectral methods can sustain turbulence and 
predict statistics with reasonable accuracy in channel flow with as few as four Fourier 
modes in the streamwise direction. Given the limited computational resources 
available, we have thus decided to concentrate numerical resolution in the spanwise 
and normal directions of our domain. 

Section 4.6 will present some preliminary results obtained from a simulation of 
flow over slightly rounded riblets. The computational domain described earlier was 
modified slightly ; all dimensions and resolutions remained unchanged except for the 
actual riblet dimensions. The symmetric rounded riblets have height h = 0.18 and 
base s = 0.2 units in length; these correspond to h+ z 18.3 and s+ x 20.3 a t  Re = 
3500. The curvature of the riblet tip (the lower half of the riblet is virtually 
unchanged) corresponds to a smooth spline fit that attempted to  match the slope of 
the original riblet near the midpoint. The new channel height for the rounded-riblet 
domain is H = 1.91. 

3.2. Transition to turbulence 
All the riblet simulations were performed with a constant volume flow rate of &(t )  
equal to the cross-sectional area of the computational domain, thus fixing the bulk 
streamwise velocity at [Wl = 1.0 (see the end of $2.1 for details). For the triangular 
riblets a constant flow rate of &(t)  = 3.8 was used, whereas for the rounded riblets, 
&(t) = 3.802657 78. 

A number of different perturbations were investigated in an attempt to trip the 
initial flow (the laminar steady-state solution). Disturbances of low to moderate 
amplitude imposed on (x, y)-planes and uniform along the streamwise direction (2) 
died out. The disturbance form that produced the best results corresponded to 
superimposing a large-amplitude streamwise sinusoidal wave onto the mean velocity 
field. This perturbation contained energy in only some of the higher Fourier modes 
(modes 2-5) and had an amplitude equal to 10% of the mean bulk velocity; 
disturbance waves with amplitudes less than 10% all failed. Amplification of the 
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FIGURE 5. Exponential amplification of the initial disturbance (Re = 3500) ; 
(a)  W and (b)  P soon after the perturbation. 

disturbance occurred and the simulation was carried out for a large number of 
convective time units (H/ [WJ) .  We note that Zores (1989) reported that a disturbance 
of amplitude 30% of the mean was necessary in order to promote transition in a 
lower-resolution channel flow spectral simulation. 

Figure 5 shows time histories (from various fixed points in the domain in physical 
space) of the streamwise velocity and pressure soon after the initial perturbation at 
Re = 3500; we see the onset of exponential amplification of the disturbance. 
Increasing amounts of energy are introduced into the higher (non-zero) Fourier 
modes at later times. 

The equations were integrated forward in time for a large amount of convective 
time units, until eventually a stationary turbulent flow was reached. We identified 
the time-independence of this statistically steady flow state (and began tracking 
turbulence statistics) when the following conditions were satisfied : (i) the total shear 
stress profile became linear (see $4.3 for details), (ii) the mean velocity profile over 
the smooth wall agreed with the 'law of the wall' (see $4.2 for details), and (iii) 
examination of the time histories and spectra of instantaneous quantities verified the 
disappearance of intermittency. 

In  the subcritical cases (in the laminar regime) the initial disturbance died out, as 
shown in figure 6(a) ,  which is a time history of the streamwise velocity at a single 
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FIGURE 6. Time histories of the streamwise velocity at single fixed points in the domain: (a)  
subcritical case - disturbance dies out and the flow returns to its laminar steady state (Re = 1500), 
(6) flow is transitional (Re = 2750). 

point in the flow. In  figure 6 ( b ) ,  a transitional state is reached. The perturbation does 
not die out, but inadequate resolution (this result is from the K = 80, N,  = N u  = 7 
case) prevents further evolution to a turbulent state. 

The higher-resolution meshes allowed us to compute the essential (smaller) 
turbulence scales and the flow was further integrated until a stationary state was 
finally achieved. Figure 7 is a time history of the non-dimensional pressure gradient 
( A p  from (7)), shown some time after passing through transition (the large over-shoot 
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spike in the signal). A stationary state has been reached by approximately t = 600 
(in the non-dimensional time units of figure 7). We note that this non-dimensional 
forcing term oscillates with an amplitude of roughly 8%,  and that it contains 
numerous high- and low-frequency fluctuations. 

4. Results 
4.1. Laminar $ow results 

Steady, time-independent solutions corresponding to fully developed laminar flow 
were obtained in the computational domain depicted in figure 1. In  figure 8, we 
consider profiles of the streamwise velocity a t  Re = 1000, in global coordinates. 
Three profiles are shown, taken across the channel from the riblet valley, midpoint, 
and tip locations to the smooth wall. The laminar velocity profiles in the riblet 
channel are similar to the parabolic profile of a plane Poiseuille flow, except in the 
riblet valley regions. We see that above y z 0.3, all profiles collapse to the same 
result. Inside the riblet valleys, however, the streamwise velocity profiles are 
inflexional in nature - in the laminar regime this is the main difference between the 
flow over the smooth wall and the flow over the riblet wall. The presence of an 
inflexion point in the velocity profile suggests that the instability mechanism which 
initiates transition over the riblets may be different from that of the smooth wall. 
This is one of the many crucial issues that need further investigation if riblets are to 
be considered in industry applications (Lynch & Klinge 1991 ; Robert 1992). 
Fundamental understanding of how riblets affect flow stability and transition 
properties in complex geometries is needed. Ongoing and future research in this 
project will address such transition studies ; currently, such a detailed investigation 
using direct numerical simulation (DNS) alone is prohibitively expensive. 

The inflexional velocity profiles inside the riblet valleys identify regions of slow- 
moving fluid near the wall (compared to the regions near the riblet tips), and thus 
correspond to regions of lower shear stress. I n  figure 9, we examine the distribution 
of the local skin friction inside a typical riblet valley in the laminar regime (at Re = 
1000). We define the local skin friction and wall shear stress as 

where n is the direction normal to the wall surface (for the smooth wall, n = y). 
In  this figure, the triangles correspond to C, a t  collocation points along the valley 

wall. Note that the regions near the riblet tips have a higher shear stress than the 
smooth wall, while the valley locations have a decreased shear stress. While the riblet 
wall has a lower average skin friction (C,,,,,,, = 0.00592) than that of the smooth wall 
(Cf,,,,,, = 0.01284), its drag (which depends on the wetted area) is higher. For the 
symmetric triangular riblets, the ratio of lower-wall surface area to top-wall surface 
area is Ariblet/Asmooth = 2.23607 ; this yields a drag penalty for the riblet wall a t  this 
Reynolds number. 

In  the laminar flow regime, the C, profiles in the riblet valleys are self-similar at 
each Reynolds number ; the riblet wall always has a higher drag than the smooth wall 
for laminar flow (see figure 33 in $4.5). For steady, fully developed, laminar flow in 
a channel with two smooth walls, the exact relation of the wall skin friction to the 
Reynolds number can be derived as : Cf ,= 12/Re. The steady-state laminar solution 
corresponding to the flow in our particular riblet channel (using the triangular 
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FIGURE 8. Laminar streamwise velocity profiles across the triangular riblet channel in global 
coordinates, at Re = 1000 : -, valley; 1 * . . . , midpoint; ---, tip. 

FIGURE at Re = 1OOO. 

riblets) is similarly fully developed ; the only non-zero velocity component in the 
solution is the streamwise velocity W. Therefore, we may empirically derive an 
expression for the average skin friction on the riblet wall, C, M 5.92/Re, which is valid 
for the lower wall of our channel in the laminar regime. Thus, there will not be any 
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FIGURE 10. Mean streamwise velocity profiles in global coordinates through the riblet valley 

(-), from the riblet midpoint ( .  . . . . .), and from the riblet peak (----). 

: O r - - -  I ' ' " ' I  

Log region 

1 10 I00 

1% (,Y+> 
FIGURE 11. Mean streamwise velocity profile above the smooth wall in wall coordinates : -, 

computed values ; ----, linear and log laws ; . . . . . , Spalding's law of the wall. 

drag reduction in laminar flow for the triangular riblets we consider. The character 
and general profile of the local skin friction distribution (highest a t  the tips, lowest 
in the valley) is similar for flows in the turbulent regime (see $4.5 for details). 

4.2. Turbulent mean $ow properties 
In  figure 10 three profiles of the mean streamwise velocity a t  Re = 3500 are shown 
in global coordinates. They are taken from three different points on the riblet wall 
(from the riblet valley, from the midpoint, and from the riblet tip) to the smooth 
wall. As with the laminar flow results of $4.1, the profiles inside the riblet valley are 
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inflexional. Below the midpoint of the riblet valley, the mean streamwise velocity 
does not exceed 5 % of the bulk velocity. We see that the influence of the riblet wall 
on the velocity profile extends upwards to approximately y z 0.3 (y+ z 26 in riblet 
wall units) for this Reynolds number; above this point the profiles from the three 
different regions collapse to a single profile. 

In  figure 11, we examine the mean streamwise velocity profile above the top 
(smooth) wall in non-dimensional wall coordinates. The dashed and dotted lines 
correspond to : 

w+ = yf, 

w+ = ( 1 / ~ )  In (y') +p, ( l i b )  

(1lc) 1 - KW+ - i(KW')2 - g( KW+)3]. y+ = w+ + epKP[eKw+ - 

Equation (1 1 a )  represents the linear region, and (1 1 b )  represents the logarithmic 
region (both are represented with dashed lines). The dotted line is (1  1 c )  : Spalding's 
law of the wall. All three equations are depicted using Nikuradse's values of ( ~ , p )  = 
(0.40,5.5), which are more appropriate for this low Reynolds number flow. The 
computed mean streamwise velocity profile above the smooth wall is represented by 
the solid line. It is in excellent agreement with the suggested correlations. The 
corresponding mean velocity profile above the riblet wall is shown in figure 12 ; the 
dashed and dotted lines are again (1 1 a-c), and the solid line represents the computed 
values. Here, the valley midpoint has been chosen for the origin y+ = 0 and a span- 
averaged value of the local shear velocity is used for normalization. The riblets seem 
to effectively thicken the viscous sublayer; the upward shift in the logarithmic 
region reported by Wallace & Balint (1987) is clearly evident here, although it is 
overpredicted. This quantitative difference is perhaps due to a different normal- 
ization with respect to the shear velocity. 

Additional bulk flow properties have been computed ; those corresponding to 
Re = 3500 (for the triangular riblet domain) are listed in table 1 .  It is interesting to 
compare the smooth-wall and riblet-wall values to each other, and to empirical 
correlations from Dean (1978), who presents an extensive survey of experimental 
high aspect ratio (two-dimensional) channel bulk flow parameters. It should be 
noted, however, that Dean's correlations are for smooth channels (with two flat 
walls) at higher Reynolds number regimes than those investigated in this study; 
caution should be exercised when making comparisons. Recent numerical and 
experimental studies in smooth-channel flows suggest that fluid from one wall does 
not contribute significantly to the Reynolds shear stress at  the opposite wall for 
geometries of similar dimensions to the one under consideration (see Antonia et ad. 
1992). However, there was no attempt in the current study to investigate this issue, 
which should be addressed in future work. 

For the riblet channel at  Re = 3500, the values of the Reynolds number based on 
centreline velocity and shear velocity are Re, = 2250, Re, = 131 for the smooth wall, 
and Re, = 128 (based on the span-averaged shear velocity) for the riblet wall. Here 
Re, = W,($H)/v and Re, = W,(Ia)/v. Dean suggests a ratio of centreline velocity to 
bulk velocity of W,/[Wl = 1.28Re-0.0116 €or a smooth channel in the regime 6 x lo3 < 
Re < 6 x lo5. This equation yields a ratio of 1.16 at Re = 3500; the computed ratio 
for the riblet channel is 1.22. This value of W,/[Wl, however, compares more 
favourably with the experimental results reported in Dean (1978) if we consider the 
proper regime 3000 <Re < 6000. At Re = 3500, the experimental data from Dean 
(1978) correlates with W,/[Wl = 1.21, indicating much better agreement. It should 
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FIGURE 12. Mean streamwise velocity perturbation above the riblet wall (midpoint location) in 
wall coordinates. Notice that non-dimensionalization is performed with the Zocal shear velocity. 
Curves defined as in figure 11. 

Smooth wall 
Re 

Re, 131 

KIK 17.08 
s* 0.140 
e 0.079 
H = s* j e  1.77 

Re, 

wcltwl 

.=-(-) W, H-1 

w , H  

7.45 

Riblet wall 
3500 
2250 

128* 
1.22 

17.54* 
0.205 
0.089 
2.30 

14.85 

4.74 

TABLE 1. Comparison of bulk flow properties for the triangular riblet domain. * Based on span 
averages. 

also be noted that the presence of the riblet wall should be expected to yield a slightly 
different centreline velocity for the riblet channel as compared to a smooth channel. 

The following quantities all depend on the displacement thickness 6" and the 
momentum thickness 0 ; there is some uncertainty, however, concerning how 
relevant these values are for the riblet wall, since its geometry varies in the spanwise 
and normal directions, and the location of the normal origin is somewhat arbitrary. 
To be consistent with the choice of H (see $3.1) and the literature, measurements for 
the riblet wall are based on a normal coordinate origin located at the riblet valley 
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midpoint (y = 0.1).  We may then use the following results to provide us with insight 
into the ‘overall effect’ of the riblet wall, and we use Dean’s correlations to help us 
in estimating the accuracy of the smooth-wall calculations. 

The displacement thicknesses for the smooth wall and riblet wall are S,*,,,,, = 
0.140 and = 0.205. As expected, the riblet wall has a much larger (by 
approximately 46%) S*, which would correspond to a lower shear stress on an 
identical geometry. The values of momentum thickness are Osmooth = 0.079 and 
Oriblet = 0.089. Again, the riblet wall has a larger (by approximately 13%) value of 
t9 than the smooth wall, consistent with the lower shear stress trend. 

Typical values of the shape factor H = S * / O  range from 1.2 (for a boundary layer 
in an accelerating flow) to 3.5 (for a boundary layer on the point of separation) (Dean 
1978). The value of H for the smooth wall is Hsmooth = 1.77; this compares well to 
Dean’s empirical result of H = 1.76 for Re = 3500. The shape factor for the riblet- 
wall boundary layer is Hriblet = 2 . 3 ;  this larger value is consistent with the profiles 
depicted in figure 10. The Clauser shape parameter G, which is a shape factor that 
remains constant in an equilibrium turbulent boundary layer (H may vary with z ) ,  
is given by 

Dean’s data yield a value of G = 7.1 (for Re = 3500) ; the riblet channel has the values 
Gsmooth = 7.45 and Griblet = 14.85. The velocity defect ratio J = (W,-[Wl)/W, is 
typically used to describe profile similarity outside the viscous sublayer. For Re = 
3500, Dean’s empirical correlation is J = 3.1  ; our computations show Jsmooth = 3.08 
and &,let = 4.74. 

The non-dimensionalized triangular riblet dimensions h+, s+ (height, base) for 
Re = 3500 are 17.1 wall units based on the shear velocity averaged over the valley 
or 25.5 based on an equivalent shear velocity averaged over the riblet span. We 
see that the riblets are in the optimal drag-reduction envelope of approximately 
5 < (h+,s+) < 30 for symmetric V-groove riblets, as investigated in Walsh (1990b) 
and Walsh & Anders (1989). 

4.3. Turbulence statistics 
In this section, we discuss the statistical data that have been gathered from the 
turbulent flow results at  Reynolds number 3500. Our results include low-order and 
higher-order statistics involving all three velocity components, and are examined 
using both spatial and temporal analyses. The statistics were computed over a time 
sample of roughly 300 non-dimensional time units; in the following sections an 
overbar will correspond to  a time-averaged quantity. Where appropriate, all 
statistical quantities have been additionally averaged in z (the homogeneous 
direction), and also horizontally ‘ piecewise-averaged ’ in x (the spanwise direction), 
thus collapsing the domain to one single riblet for analysis of the averaged statistics 
(the overbar notation is also used for these averages). 

4.3.1. Correlations and turbulence intensities 
The spanwise two-point correlation functions for each component of the fluctuation 

velocities have been computed and are examined below. The streamwise velocity 
correlations are defined by 
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FIGURE 13. Spanwise two-point velocity correlations (a) near the smooth wall, ( b )  close to the 

and R ( ~ , T ) ~ ~ ,  R(y,r)uu are defined similarly. As was mentioned in $3.1, the 
computational domain should be large enough so that turbulent fluctuations are 
uncorrelated at separation distances of one half of the periodic length(s) of the 
domain. Figure 13 shows examples of two-point correlations in the spanwise 
direction at  three y-locations: (a)  at a point near the smooth wall (y = 1.625), (b )  
close to the channel centreline (y = i . O ) ,  and ( c )  at a point near the riblet wall 
(y = 0.375). The three velocity correlations have been overlaid in each plot. In  all 
cases, the correlations approach zero for increasing separation distances, indicating 
that the spanwise length of the computational domain (L, = 2.0) is sufficiently large. 
There appears to be an anomaly in the R,, plot, which seems to approach a non-zero 
value. This may be due to an inadequate time sample; unfortunately, for this 
geometry no experimental data on spanwise correlation length are available. It is 
interesting to note that there is actually a pronounced negative w'-correlation near 
the riblet wall (see figure 13c). Current computational resources have limited the 
streamwise extent of the computational domain to L, = 5.0, or about 680 viscous 
wall units at  Re = 3500. Profiles of quantities in the streamwise direction are 
modulatory and consist of up to five complete waves. 

The computed turbulence intensities, (w,,, = (w'");) etc., are shown in figures 14, 
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FIGURE 14. The three components of the turbulence intensities through the riblet valley. The riblet 
wall is located on the left (at y = 0 to 0.2) and the smooth wall is located on the right (at y = 2.0). 
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FIGURE 16. As figure 14 but from the riblet tip. 

15, and 16, where the three components of the velocity fluctuations are normalized 
by the bulk streamwise velocity. Profiles are taken across the channel (with the riblet 
wall on the left and the smooth wall on the right) a t  spanwise locations through the 
riblet valley (y = 0) ,  from the riblet midpoint (y = O . l ) ,  and from the riblet tip (y = 
0.2). 
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FIQURE 17. Streamwise turbulence intensity in the near-wall region: -, smooth wall; 
. . . . ., riblet tip; ---, riblet valley. 
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The profile shapes and peak values of the turbulence intensities above the smooth 
wall are in good agreement with turbulent channel flow results, both experimental 
and computational results of Kim et al. (1987), Gupta & Kaplan (1972), and Kreplin 
& Eckelmann (1979). The streamwise intensity values above the riblet wall are in 
good agreement with the experimental results reported in Walsh (1990a), Wallace & 
Balint (1987), VukoslavEevid et al. (1987), and Choi (1989), which correspond to flows 
over riblet-mounted flat plates ; no experimental results for riblet-mounted channel 
flows exist, and no other computational results (apart from those in this present 
study) for turbulent flow over riblets have been obtained yet. Only a few investigators 
have measured the normal and spanwise fluctuations over riblets (over a riblet- 
mounted flat plate), i.e. Choi (1989), Walsh (1980), and Hooshmand (1985); these 
results have been inconclusive, showing either no change or small reductions over the 
boundary layer. The inconsistencies between the experimental data and the smaller 
values of the normal and spanwise fluctuations make it likely that these 
measurements have been affected by probe error (cross-contamination of hot-wire 
probes greatly affect normal and spanwise measurements, for instance), see Wttlsh 
(1990a). Recently, new experimental data (LDV measurements) for spanwise 
fluctuations over riblets have been obtained by Benhalilou et al. (1991); these are in 
good agreement with our simulation results. 

From figures 14, 15, and 16, it is apparent that all three components of the 
turbulence intensities are reduced in the vicinity of the riblet wall (compared to 
values near the smooth wall), even at locations above the riblet tips, in agreement 
with the findings of Vukoslavirevid et al. (1987). This is an interesting phenomenon, 
in the light of the fact that the local wall shear is substantially higher than near the 
riblet tips when compared to  the smooth-wall values; these details will be discussed 
in $4.5. We also note that the profiles of the streamwise and spanwise r.m.s. velocities 
taken from the riblet valley show slight bumps deep in the valley regions; this will 
also be discussed at further length in later sections. 

To investigate the differences between the smooth- and riblet-wall profiles in more 
detail, we examine profiles of the streamwise turbulence intensity near the wall in 
figure 17. Profiles from the smooth wall, the riblet tip, the riblet midpoint, and the 
riblet valley have been overlaid and shifted such that the plot origin (y/S = 0) 
corresponds to the wall surface of each profile. Here S is the channel half-height 
defined earlier. We see that the presence of the riblets reduces the peak streamwise 
velocity fluctuations as compared to the smooth wall ; at the valley location there is 
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FIGURE 18. -pm (streamwise) component of the Reynolds stress across the channel (riblet 

wall on the left, smooth wall on the right); (a)  through valley, ( b )  from tip. 

an approximate reduction of 11 %. The turbulence intensity is effectively suppressed 
inside the valleys of the riblets (y/6 < 0.2). Near the bounding surface of the smooth 
wall, the streamwise intensity peaks at  roughly 14 % of the bulk streamwise velocity, 
while the intensity above the riblet valley locations reaches only 7 % at y/6 = 0.2. It 
is interesting to note, however, that although very low, the turbulence intensity 
levels inside the riblet valleys are not negligible. The small bump in the wrmS profile 
at  y/S x 0.05 (and the small bump in the urms profile) suggests slight activity even 
in regions deep within the riblet valleys; this further confirms the need for full 
Navier-Stokes simulations of riblet flows, and is consistent with the flow reversal 
findings reported in $4.4.2. 

4.3.2. Reynolds shear stress 
Experimental results to date have shown contradicting measurements of the 

Reynolds stress in flow over riblets; most investigators (Walsh 1990b) have found a 
reduction over the entire boundary layer, while some (Hooshmand 1985) have 
reported an increase for locations near the riblets. These discrepancies are most likely 
due to the same uncertainties involved in hot-wire measurements of the normal and 
spanwise turbulence intensities. 

In figure 18 we plot the - p m  component of the Reynolds stress across the 
channel. As in figure 14, the riblet wall is on the left and the smooth wall is on the 
right of the plot; profiles are taken from spanwise locations (a )  through the riblet 
valley and ( b )  at the riblet tip. The profile shapes and peak values above the smooth 
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FIGURE 19. Total shear across the channel, in global coordinates. Profiles are taken from the 
riblet midpoint. -, Total shear; ---, pdW/dy ; . . . . . , pw'w'. 

wall are in good agreement with turbulent channel flow and flat-plate results 
(Wallace & Balint 1987 ; Gupta & Kaplan 1972). Detailed experimental and/or 
computational Reynolds stress profiles over riblets at  specific stations are not 
available (aside from those presented here). 

It is apparent that the riblets significantly reduce the Reynolds stress values, as 
compared to the smooth wall, and thus result in decreased vertical momentum 
transport. This is consistent with our findings of drag reduction at  this Reynolds 
number (see $$4.4 and 4.5 for details). The peak - p m  value is reduced by more 
than 20% above the riblet wall. We also note that figure 18 shows that virtually zero 
vertical momentum transport occurs inside the valleys of the riblets. 

In fully developed turbulent channel flow, we expect that the total shear stress 
7total = p(dw/dy) -pm will be linear across the channel (for a channel with two 
smooth walls) when the flow reaches an equilibrium state. As mentioned in $3.2, this 
profile was used to establish the point in the time integration when the flow had 
reached a statistically steady state. In  figure 19, ' T ~ ~ ~ ~ ~  is plotted across the channel 
from a spanwise location corresponding to the riblet midpoint -hence the deviation 
from a straight line near the riblet wall. The solid line is the total shear, while the 
dashed line represents the physical shear ,u(dW/dy) and the dotted line is the 
Reynolds stress component - p m .  We see that across most of the channel the total 
shear is linear, and that it falls dramatically inside the riblet valley; this is consistent 
with our other findings of substantially reduced Reynolds stresses and wall shear 
inside the riblet valleys. 

4.3.3. Quadrant analysis 
A quadrant analysis of the Reynolds stress field was performed; this analysis 

provides detailed information about turbulence production from various events 
which occur in a turbulent flow (Kim et al. 1987; Willmarth & Lu 1972). Fractional 
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FIGURE 20. Comparison of quadrant analysis over (a)  the smooth and ( b )  riblet walls 

0, Quadrant I ;  A, quadrant 11; ., quadrant 111; A, quadrant IV. 

contributions to the total Reynolds shear stress - p m  were computed and analysed 
at  each point in the domain. We adopt the standard quadrant analysis notation, see 
Kim et al. (1987): Quadrant I represents (w' > 0, w' > 0) events, quadrant I1 
represents (w' < 0, w' > 0) events, quadrant I11 represents (w' < 0, w' < 0) events, 
and quadrant IV  represents (w' > 0, v' < 0) events. 

In figure 20 we examine and compare the fractional contributions from each 
quadrant as a function of the normal wall coordinate above the smooth and riblet 
walls. The quadrant analysis was performed over a time sample of roughly 250 non- 
dimensional time units; a spanwise location corresponding to the riblet midpoint was 
used for the analysis over the riblet wall. The smooth-wall results in figure 20 are in 
good agreement with the turbulent (smooth) channel flow quadrant analysis of Kim 
et al. (1987). We see that near the smooth wall, turbulent shear stress production is 
dominated by sweeping or inrushing events from quadrant IV. At y+ w 12 there is a 
crossing point between quadrant I V  and quadrant I1 contributions ; above this point 
bursting or ejection events (quadrant 11) dominate. This crossing point above the 
smooth wall is in good agreement with the crossover point identified from analysis 
of the higher-order statistics (see $4.3.5). In  general, quadrants I1 and IV (positive 
production) have larger contributions to the shear stress production ; the con- 
tributions of quadrants I and I11 are relatively small. Examination of the quadrant 
analysis over the riblet wall reveals some differences compared to the smooth-wall 
results. Away from the wall, the general distribution of the contributions from each 
quadrant seems to be similar to that of the smooth wall. It seems, however, that the 
crossover point between quadrants I1 and IV  is shifted slightly farther away from 
the wall by the riblets, to y+ % 13. In addition, in the near-wall region the 
contributions from quadrants I and IV are significantly increased for the riblet wall. 
Both of these quadrants have w' > 0 events in common. This finding is consistent 
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with the examination of the higher-order moments of the streamwise velocity 
fluctuations (in 94.3.5), which shows large positive peaks in the skewness factors of 
w' within the riblet valleys. 

In  figure 21, we visually examine the distribution of the quadrant contributions on 
y-planes a t  a single instant in time. The instantaneous contributions from each 
quadrant are depicted a t  y-locations corresponding to the crossing points above the 
smooth and riblet walls. At this time instant, we see that above both walls quadrants 
I1 and IV do indeed dominate the turbulent shear stress production, and that the 
contributions from both of these quadrants are roughly equal (as they should be, a t  
the crossing point). Note, however, that the contributions from the various events 
seem to be more evenly distributed between the quadrants above the riblet wall. 
Above the smooth wall the pattern of events is strongly skewed into quadrants I1 
and IV only; above the riblet wall the pattern is much less eccentric, although the 
bursting and sweeping events still dominate. 

4.3.4. Temporal analysis 
A VITA analysis (Blackwelder & Kaplan 1976) was performed on the streamwise 

and normal velocity signals above the smooth and riblet walls. A VITA average (in 
this example, performed on the instantaneous streamwise velocity w) is defined as 
follows : 

++T 
&(xi, t ,  2') = w(xi,  s )  ds, 

t-iT 

where the VITA averaging period T should be on the order of the timescale of 
the phenomena under study (bursting, in this case). A localized variance may now 

(13c) 
be defined as 

var (xi, t ,  7') = w2(xi, t ,  T) - [Z;(xl, t ,  T)I2. 
This localized variance is ti positive-definite quantity. Finally, we define a detection 

h 

6 

where k is the threshold level used in the detection criterion. We note that 
- A m(xi) = lim &(xi, t ,  T), w'"xi) = lim var (xi ,  t ,  T). 

T+CC T+XJ 
2 
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FIGURE 22. VITA analysis example showing (a) streamwise velocity signal, ( b )  localized 

variance signal, and (c) detection function. 

Blackwelder & Kaplan (1976) suggest a VITA averaging period corresponding to 
Tt = Tu:/v = 10 and a detection threshold of k = 1.2 for use in burst detection; 
these values of Tf and L were used in the following analyses. Figure 22 is an example 
of the VITA technique applied to a streamwise velocity signal obtained at a single 
point in the computational domain. The actual velocity signal is shown at the top, 
followed by its corresponding localized variance, and at the bottom, the detection 
function. 

The VITA analysis was applied to selected points near the smooth and riblet walls 
(above the riblet midpoint) ; in figure 23 we compare the results. Here the bursting 
frequency is non-dimensionalized using the half-channel height 6 and the centreline 
velocity We. This form of non-dimensionalization (as compared to using wall 
coordinates) greatly diminishes the effects of the uncertainties encountered in 
choosing the correct shear velocity for the riblet wall Walsh (1990b). According to 
figure 23, the peak bursting frequencies above both walls are roughly the same, but 
the riblet wall seems to significantly shift the location of the peak frequency farther 
away from the wall. When one computes the same bursting frequency profiles in wall 
coordinates, however, the shift of the peak location away from the wall is still present 
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FIGURE 23. Comparison of bursting frequencies over the smooth (0) and riblet (A) walls, 
as computed from the VITA analysis. 

above the riblets, but it is much smaller. This is consistent with the findings of the 
quadrant analysis, which showed a slight upwards (away from the wall) shift of the 
quadrant I1 and IV  crossover point above the riblet wall. In addition, there is a 
decrease in the bursting frequency very close to the riblet wall, in the valley midpoint 
region. 

Although no change in the peak bursting frequency was detected, the results from 
the analysis do show a slight increase in the burst duration for the events above the 
riblet wall. The VITA technique was also applied to the normal velocity time signals 
above both walls. The only trend to emerge from these analyses was that the normal 
velocity fluctuations above the riblet wall had a decreased bursting frequency 
compared to the smooth wall. 

4.3.5. Higher-order statistics 
The third and fourth moments of the velocity fluctuations have also been 

computed, and are presented below. The computed values above the smooth wall are 
in good agreement with both experimental and other computational results 
(VukoslavEevid et ul. 1987 ; Kim et ul. 1987; Kreplin & Eckelmann 1979; Moin & Kim 
1982). 

Figures 24 (a ,  b ) ,  25 (a,  b ) ,  and 26 (a,  b )  show the skewness and flatness factors of the 
streamwise, normal, and spanwise velocity components, respectively, across the 
channel in global coordinates. In each figure, the solid line represents a profile taken 
from the riblet tip to the smooth wall, the dotted line corresponds to a riblet 
midpoint origin, and the dashed line is a profile from the riblet valley. A reference line 
has also been drawn in each figure, corresponding to the skewness and flatness factors 
of a Gaussian distribution (0 and 3, respectively). All the profiles collapse to the same 
results above y % 0.35; this shows the extent of the riblet wall's influence on the 
skewness and flatness factor profiles. It is expected that the small oscillations in the 
profiles will disappear if a larger time sample is taken. 

Let us now consider the profiles of S(w') a n d P ( z )  in figures 24 (a )  and 24 ( 6 ) .  Large 
positive skewness values indicate regions where the velocity is generally less than the 
mean, with occasional large excursions to values greater than the mean (Walsh 
1990b). Large flatness values correspond to brief periods of large deviation from the 
mean. These types of behaviour are to be expected in the near-wall regions, where 
rare but large-amplitude fluctuations in w' correspond to intermittent ' sweeps ' of 
high-momentum fluid towards the wall. The computed skewness and flatness factor 

2-2 
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FIGURE 24. Streamwise (a )  skewness and ( b )  flatness factor profiles across the channel, 
in global coordinates : -, tip ; * * . . . . , midpoint; ---, valley. 

profiles reach their maxima near the walls. Comparison of the #(a) profiles above 
both walls shows that the riblets have little effect on the streamwise skewness factor 
peak values in these regions; a small reduction near the riblets may occur. The peak 
streamwise flatness values, however, seem to be substantially reduced near the 
riblets, indicating reduced intermittency in the streamwise fluctuations. It is 
important to note that the skewness and flatness profiles above the midpoint and 
valley locations (dotted and dashed lines) actually peak inside the riblet valley 
regions (below y = 0.2), and are close to negligible below the midpoints (y = 0.1). 
This shows that occasional penetration of high-speed fluid into the riblet valleys 
occurs to locations as low as the midpoint (approximately) ; below this point the 
fluctuations are somewhat symmetric and relatively small. These findings are in 
general agreement with those of VukoslavEevid et al. (1987). Directly above the 
riblet valley, there is actually a region of negative skewness #(z). 

Moving away from the wall, the profile of S(w') is positive, showing large 
excursions of w' > 0 (sweeps), and then becomes negative, indicating the occurrence 
of large excursions of negative w', corresponding to bursting activity farther away 
from the wall. This is consistent with findings of 54.3.3, which showed that quadrant 
IV  events (sweeps) dominate close to the wall, and quadrant I1 events (bursts) 
dominate farther away from the wall. The X ( 7 )  profile crosses zero at y+ % 12 over 
the smooth wall, showing excellent agreement with the crossing point of y+ m 12 
identified from the quadrant analysis. If we now examine the skewness and flatness 
profiles of ?I' (figure 25a, b ) ,  we confirm that #(T) also changes sign at y+ z 12 above 
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in global coordinates. Curves defined as in figure 24. 

the smooth wall. The sign of S(v') is reversed above the smooth wall due to 
the direction of the normal coordinate y. As with the streamwise fluctuations, the 
flatness factors of the normal fluctuations seem to be slightly reduced above the 
riblet wall (compared to the values above the smooth wall), indicating reduced 
intermittency. Also note that peaks in F ( 7 )  also occur inside the riblet groove, and 
that above the riblet valley location there is a significant region of negative skewness 
in v'. It is interesting to note that there is a large-amplitude positive peak in S ( 7 )  
directly above the riblet tip. This large positive skewness identifies the riblet tip as 
a region where large excursions to values greater than the mean occur in the normal 
velocity component. 

Figure 26 (a ,  b )  shows the skewness and flatness factors of the spanwise fluctuations 
u'. The skewness profiles are basically zero across most of the channel ; the non-zero 
values near the centreline are due to the short time sample length. The riblet walls 
have little effect on S ( 2 )  away from the riblets. Very near the riblets, however, there 
seems to be some activity in the spanwise velocity fluctuations. There are regions of 
non-zero skewness of u' for y < 0.25; recall the slight bump in the u,,, profile in 
figure 14, suggesting spanwise motions even deep within the riblet grooves. Further 
insight into this phenomenon will be given in $4.4. The flatness factor profiles F(7) 
show large increases in peak values near the riblets, suggesting that large spanwise 
fluctuations are much more intermittent near the riblet wall, compared to the small 
wall. This effect has also been reported in the experimental data of Wallace & Balint 
(1987), and Hooshmand (1985). Walsh (1990b) notes that this u' dampening is 
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consistent with the hypothesis that the spanwise motion of low-speed streaks is 
reduced by the presence of the riblets. 

4.4. Turbulent flow structure and physics 
In this section, we now turn our attention to the instantaneous flow field, and the 
turbulent flow structures it contains. As mentioned in $3.1, our use of a channel with 
both smooth and riblet-mounted walls allows the simultaneous comparison of flow 
field structures in the boundary layers near both walls. A qualitative investigation 
of the turbulent flow structure in the riblet channel will be carried out, using flow 
visualization results presented with colour contour plots. Once again, we examine 
results from Re = 3500 ; the flow visualization pictures correspond to the same single 
time instant, taken well after a turbulent stationery state has been reached. The 
instantaneous velocity, vorticity, and Reynolds stress component - pv'w' fields are 
examined at various locations in the computational domain. 

4.4.1. Instantaneous plane contours 
Insight into the nature of the various structures present in the flow field can be 

gained by viewing flow contours on different planes at the same time instant. 
Examination of contours on spanwise (constant-x) slices throughout the domain 
revealed the existence of large-scale streaky structures near both top and bottom 
walls. From the velocity contours it was seen that regions corresponding to low- 
momentum fluid had ejection-type motions (normal velocities away from the wall) 
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FIGURE 30. Instantaneous streamwise velocity contours on the plane y = 0.075 showing flow 
reversal (arrows) deep within the riblet valleys. 

associated with them and regions of high-speed fluid had strong inrush-type motions 
associated with them. The vorticity and instantaneous Reynolds stress contours 
revealed that there was a high correlation between the aforementioned bursting and 
sweeping events, concentrations of positive and negative vorticity, and positive 
stress production (regions of negative Reynolds stress). 

We now examine instantaneous contours on a typical streamwise slice. The plane 
we consider is located at z = 0.25, corresponding to (XE [0,2.0], YE [0,2.0]) in the 
computational domain. Note that the riblets are symmetrical triangles with height 
and base h = s = 0.2. The flow direction for these streamwise plane figures is into the 
page. 

Figure 27 (plate 1) depicts instantaneous streamwise velocity contours on this 
z-plane (figure 27a) ; the colour scale ranges from W = -0.027 (white) to W = 1.38 
(red). At  x w 0.6 (just right of centre), we see the large eddy-like structure of a faint 
low-speed region which extends quite some distance from the top wall to y x 1.65. 
Note also the mushroom-shaped low-speed structures near the top wall in the upper 
left corner, and the structures near the lower wall at  x M 0.7 and x M 1.7; all of these 
regions correspond to long streak-like structures in the spanwise-plane contour plots. 
It will become apparent, as we view contours of the normal velocity, vorticity, and 
-p 'w ' ,  that we are viewing low-speed streak-like structures (and their associated 
high-speed sweeps events) in various stages of the bursting process. 

Figure 27 ( b )  shows the instantaneous normal velocities on the same plane. In  this 
picture, white/yellow represents negative normal velocities (downwards motion), 
and red/purple represents positive normal velocities (upwards motion) ; the colour 



32 D.  C. Chu and G .  E .  Kamiadakis 

scale ranges from P = -0.2 to B = 0.2. It is immediately obvious that the low-speed 
structures in the W contour plot have violent ejection motions (away from the wall) 
associated with them. Furthermore, it is interesting to note that, in general, these 
regions are immediately adjacent to areas of inrushing high-speed fluid. For example, 
two sweep events at x w 0.35 and x w 1 .O (white regions on the B plot) surround the 
lower wall burst a t  x x 0.7. The large eddy-like structure pointed out earlier at  (x w 
0.6, y w 1.65) seems to be the end of an ejection event ; a streak has lifted away from 
the upper wall (its remnant is still visible a t  x x 0.4, y w l ag ) ,  and this blob has 
broken off from it and has been convected in the positive x-direction, its negative 
normal velocity greatly diminished a t  this time. 

In  figure 28 (a)  (plate 2) (far left picture), contours of the instantaneous streamwise 
vorticity are shown. In  this plot, white/yellow represents negative w, and red/purple 
represents positive w,. From these contours, we now see that the bursting and 
sweeping events identified in figure 27 are actually related to both pairs of counter- 
rotating vortices and single isolated vortices. The mushroom-shaped streaks in the 
upper left corner of the W plot have counter-rotating vortices on either side of them, 
with negative normal velocity regions occurring in the centre of each pair. This 
phenomenon is consistent with the widely accepted model of pairs of counter- 
rotating vortices (which form hairpin vortices) lifting streaks of low-speed fluid away 
from the wall (giving rise to ejection events) and sweeping high-momentum fluid 
down to the wall in regions surrounding the burst (Robinson 1989; Wallace 1982; 
Smith et al. 1989). Note also that the detached eddy discussed before (at x w 0.6, 
y w 1.65) also has a pair of counter-rotating vortices associated with it ; they seem 
to have been similarly stretched/convected in the positive x-direction. The event at  
x w 1.7 near the riblet wall seems to be at  a much later time in the bursting process; 
a pair of weaker counter-rotating vortices can still be distinguished near the wall in 
that region (see bottom left region figure 28a). 

The -pv‘w‘ contours on this plane are depicted in figure 2 8 ( b )  (plate 2) .  Positive 
turbulent shear stress production (negative Reynolds stress) is represented by 
red/purple in the lower half of the channel (near the riblet wall) and by white/yellow 
in the upper (near the smooth wall). This difference in colour is because the sense of 
the normal coordinate is reversed in the upper half of the channel (negative B 
represents movement away from the upper wall). We see that the areas of positive 
turbulent stress production coincide closely with the burst and sweep events. We 
note that there is a high concentration of -pv‘w’ a t  x w 1.1,  y w 0.25, although no 
clear structure seems to be apparent there in the W plot of figure 27. Further 
examination of the z-plane V and w, contours, however, show that an inrush event 
seems to have occurred there; there are also pairs of counter-rotating vortices in 
existence at this location. 

Finally, we examine the instantaneous wy contours in figure 28(c )  (plate 2). Again, 
in this figure white/yellow represents negative y-vorticity and red/purple represents 
positive y-vorticity. We see the presence of the low- and high-speed streak-like 
regions (more detailed views can be obtained on the x- and y-planes), and the extent 
to which they reach away from the walls. It seems that the presence of the riblets are 
giving rise to secondary vortices inside the riblet valleys, perhaps a phenomenon 
similar to the flow in the corners of a square duct (i.e. shear-driven secondary flow 
inside the riblet grooves). When viewing the o, contours, selectively changing the 
colour contour threshold also shows positive and negative regions inside the riblet 
valley. Recall the existence of non-zero S(u’) and X(v’) skewness factors deep inside 
the valleys (figures 25, 26), the  slight bump in the u,,, profile (figure 14) taken 
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through the riblet valley, and the large peaks in S(v’) near the riblet tips (figure 25a). 
It has been suggested by Bechert & Bartenwerfer (1989), Bacher & Smith (1985), 
Choi (1989), and Luchini, Manzo & Pozzi (1991) that the riblets interfere with 
(dampen) the secondary cross-flow associated with the longitudinal vortices present 
in the flat-plate boundary layer, and therefore manage to reduce the relative 
turbulence level and produce secondary vortical motions. 

We now view instantaneous contours on a typical normal plane, located at y+ x 
12 above the riblet wall (the crossing point identified from the quadrant analysis 
performed in $4.3.3). This plane corresponds to (ZE [0,2.0], Z E  [0,5.0]) in the 
computational domain, and the flow is from left to right. 

Figures 29 (a) and 29 (b)  (plate 3) show the instantaneous streamwise and normal 
velocities on the y-plane near the riblet wall. Colours are the same as in the velocity 
plots of figure 27; in the V plot, white/yellow represents negative or downwards 
normal velocities and red/purple represents positive or upwards normal velocities. 
Once again, we see that the long streak-like low-speed regions are highly correlated 
with normal velocity contours indicating motions away from the walls, and that 
there are corresponding inrushes of high-momentum fluid towards the walls. 

The top right and bottom right plots of figures 29(c) and 29(d) (plate 3) show the 
instantaneous normal vorticity and Reynolds stress on the y-plane near the riblet 
wall. The large spanwise variation in positive and negative wy concentrations is 
caused by the presence of elongated regions of high- and low-momentum fluid 
immediately adjacent to each other. Note that the locations of the streaks in the W 
plot are very accurately predicted by the existence of pairs of streak-like positive and 
negative wy contours. As before, we see from the instantaneous Reynolds stress 
contours (colours are as in the -pv’w’ plot of figure 28) that positive production is 
highly correlated with the quadrant I1 and IV (burst and sweep) events. 

Only general, qualitative comparisons can be made between the smooth-wall 
events and the riblet-wall events by using these instantaneous ‘snapshots’. Flow 
visualization movies have been made to assist us in making some empirical 
observations; these movies allow us to compare the smooth-wall and riblet-wall flow 
structures as they evolve in space and time. Time evolution of contours on z-planes 
showed that the average streak spacing in both cases was on the order of h x 90 wall 
units. The riblet-wall streak spacing seemed to be slightly larger than that of the 
smooth wall, but this result is strictly qualitative, as it was obtained through flow 
visualization techniques. It was seen from time evolution of contours on y-planes 
that the average ‘thickness’ or size of the low-speed streaks was smaller near the 
riblet wall. While the actual number and frequency of positive shear stress 
production events (identified from the -pv’w’ contours) near the smooth and riblet 
walls were similar, increasing the threshold levels on the colour contours showed that 
the magnitudes of the events above the smooth wall were consistently higher than 
those of the riblet wall. This was an expected result, considering the larger peaks 
above the smooth wall in the time-averaged Reynolds stress profiles (see figure 18). 

The spanwise motion of the streak-like structures was much more oscillatory 
(wavy) above the smooth wall ; the streaks above the riblet wall appeared to be more 
strongly anchored in their spanwise locations, presumably due to the presence of the 
riblet geometry below. This inhibition of the lateral movement of the wall streaks 
near the riblets is consistent with the increased flatness factors F(u’) reported near 
the riblet wall in 34.3.5. Further discussion of this phenomenon will proceed in 34.5. 
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(1.0,0.12,0.625). 

4.4.2. Flow reversal 
While from the contour plots in the preceding sections it is apparent that the 

velocities inside the riblet valleys are small, they are not completely non-negative. In 
$4.3.5, analysis of the higher-order turbulence statistics showed that strong sweeping 
events penetrated to regions deep within the riblet valleys. These inrushes of high- 
speed fluid have been observed to impinge on the wall surface and result in what has 
been described as 'the splatting effect' by Moin & Kim (1982). It is therefore not 
surprising to observe instantaneous flow reversal even in regions deep within the 
riblet valleys. 

Figure 30 is a greyscale plot of instantaneous streamwise velocity contours taken 
a t  an instant in time on the plane y = 0.075. This plane, which is defined by (XE [0, 
2 . 0 ] , z ~ [ 0 , 5 . 0 ] ) ,  passes through the riblet valleys at a location just below the 
midpoint y = 0.1. In this plot, the W-scale ranges from W = -0.015 to W = 0.015; 
white corresponds to zero-velocity regions (including those points that fall inside the 
riblet wall), and the grey shades represent positive streamwise velocity regions. The 
darkest regions (identified by the arrows) are areas of reverse flow W < 0. We see that 
at  this time instant, there are several areas of negative streamwise velocity inside the 
riblet valleys. On this y-plane, three large regions of reverse flow can be easily 
distinguished, along with a smaller area at ( x  z 3.2, x z 0.8). 

We now proceed to examine one of these flow reversal regions in more detail. 
Figure 31 ( a )  is a profile of the instantaneous streamwise velocity plotted along the 
span of the domain on the line y = 0.075, z = 0.625, X E  [0,2.0] ; this corresponds to 
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a line passing through the flow reversal regions depicted in the upper left corner of 
figure 30. We see that these flow reversal regions are not negligible, the area at x = 
1.0 reaching a negative velocity of W z -0.014 on this plane. In  figure 31 ( b ) ,  we 
examine this particular valley in finer detail ; W is plotted along the normal direction 
on the line x = 1.0, z = 0.625, y~[O,0.12] (at the valley trough). There is a 
considerable region of reverse flow deep within the valley, and at  this point the flow 
reversal reaches a magnitude on the order of 2.5 % of the bulk streamwise velocity. 
This particular negative-W region extends all the way up to just below the midpoint 
of the valley (y = 0.1) at this time instant. Our findings of flow reversal regions even 
deep within the riblet valleys serve to further confirm the necessity of using 
Navier-Stokes computations (instead of simplified models) to investigate the 
turbulent flow of riblets. 

4.5. Drag reduction 
In  $4.1, the distribution of the local skin friction inside the riblet valley in the 
laminar flow regime was examined (see figure 9). We now compare this result to the 
local Cf distribution inside the riblet valley in the turbulent regime, at Re = 3500. 
Figure 32 shows values of the local skin friction a t  collocation points along the riblet 
valley wall at  this Reynolds number. The riblet wall has a lower average Cf than the 
smooth wall. We note that the shapes of the C, distributions (higher at the peaks, 
lower at  valleys), are identical for the laminar and turbulent cases. The drag results, 
however, are different. As was mentioned in $4.1, the riblet wall had a drag penalty 
at  Re = 1000. In  the Re = 3500 case, the riblet wall has a lower drag than the smooth 
wall, despite the wetted area increase. At this Reynolds number, a 6% drag 
reduction is realized. 

These drag calculations were made by computing directly the viscous stress tensor 
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on both walls and checking these values via a global momentum balance using the 
pressure drop from equation (7) in $2.1. In  figure 33, we present the drag results at  
various Reynolds numbers in the laminar, transitional, and turbulent flow regimes. 
These computations were performed on the M2 mesh described in $3.1; we believe 
that they are more accurate than preliminary numbers published earlier (Chu & 
Karniadakis 1991 ; Chu et al. 1992). The squares represent the overall drag on the 
upper smooth wall, and the triangles correspond to the overall drag on the lower 
riblet wall. The solid line in the figure correspond to the exact laminar solution and 
an empirical data fit (Dean 1978) for a channel with two smooth walls; these are 
included for reference purposes only. Compared to the smooth wall, the riblet wall 
always has a higher drag in the laminar regime. This trend reverses in the transitional 
and turbulent regimes ; it  appears that  a drag reduction of approximately 6 % exists 
for the riblet wall a t  Reynolds number 3500. The results a t  Re = 3000 show a larger 
drag reduction, but the sample size a t  this Reynolds number (which appears to be in 
the transition regime) was only a fraction of the sample taken at  Re = 3500 ; while 
the Re = 3000 drag result shows the correct trend, a longer time sample is needed to 
verify the exact values. 

In $4.4.1 it was noted qualitatively that the average streak spacing for the riblet 
wall (at Re = 3500) seemed to be slightly larger than the corresponding value for the 
smooth wall. This would correspond to a relative reduction in bursting activity for 
the same time cycle taken over both walls. Since the eruption process is directly 
proportional to the level of momentum exchange at the wall, this is consistent with 
the reduced levels of drag a t  the riblet wall. 

The wall streaks near the riblet wall appeared to be more firmly anchored at their 
spanwise stations. We recall from $4.4.1 and figure 28 that  there seem to be some 
important vortical structures and corresponding secondary flow inside the riblet 
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FIGURE 34. Local skin friction distribution inside rounded riblet valley at  Re = 1000. 

valleys; these are likely to  be directly related to the cause of the turbulence level 
reductions reported above the riblet wall. In  the streamwise colour contour plots, 
many pairs of counter-rotating vortices were seen in regions corresponding to 
ejection and sweeping activity; these are consistent with the bursting process model 
involving hairpin vortices. The riblets seem to interfere with the lateral movement 
of low-momentum fluid near the wall surface; it has been hypothesized that this 
makes the adverse pressure gradients induced by the convecting hairpin vortices less 
effective in provoking violent ejections from the flow regions near the wall (Smith et 
al. 1989). Thus, this inhibition of the cyclical momentum exchange between the wall 
and the outer flow region causes a reduction in streak formation and subsequent 
reductions in bursting activity and wall shear stress. Our results seem to be 
consistent with the riblet drag-reduction mechanism supported by Beckert & 
Bartenwerfer (1989)) Bacher & Smith (1985), Choi (1989), Smith et al. (1989), and 
Luchini et aE. (1991). 

4.6. Rounded riblets 
As mentioned in $3.1, some preliminary results have been obtained for the flow over 
rounded riblets. Experimental results reported in Walsh (1990a), and Walsh & 
Lindermann (1984) have shown that even slightly rounded riblet peaks result in 
decreased levels of drag reduction performance. This is an important issue, especially 
when one considers the practical applications of riblets, e.g. for use in the aircraft 
industry (Lynch & Klinge 1991). Even if it  were possible to precisely machine the 
original riblet surface to assure sharp peaks, the tips of riblets mounted on an aircraft 
fusalage or wing can be expected to undergo deterioration as often as every flight 
operation. Therefore, it is of great interest to investigate the flow over rounded 
riblets. The dimensions of the rounded riblet domain are given in $3.1.  
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Investigation of rounded riblets in the laminar flow regime has been completed. As 
with the laminar results of the triangular riblet, profiles of the streamwise velocity 
are inflexional inside the riblet valleys. Figure 34 shows the local skin friction 
distribution inside the rounded riblet valley at Re = lo00 ; the circles are values of Cf 
at the collocation points along the rounded riblet valley. The rounded riblets have 
a higher average shear stress than the triangular riblets (and thus the rounded riblet 
wall also has a higher drag than the smooth wall) -this holds for the entire laminar 
regime. Similar to the triangular riblet case, there is a linear equation governing the 
rounded-riblet skin friction in the laminar flow regime. 

Preliminary computations in the turbulent regime show that rounded riblets do 
not result in the reductions in turbulence intensities and Reynolds stress obtained 
with the triangular riblets. In fact, for the rounded-riblet dimensions presented 
above, it is possible that a drag increase for the riblet wall is present at  Re = 3500. 
Longer time samples are needed to clarify this issue. Ongoing research also involves 
the investigations of the flow over other riblet shapes, in addition to the triangular 
and rounded riblets already described. 
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5. Summary and discussion 
The three-dimensional incompressible Navier-Stokes equations were integrated 

via a spectral element-Fourier method to compute the flow in a channel with a 
smooth upper wall and a riblet-mounted lower wall. The objective was to investigate 
in detail the flow over riblets using a direct numerical simulation. Both laminar and 
turbulent regimes were explored in an attempt to provide detailed numerical data 
regarding the flow over riblets, to complement and extend the existing experimental 
results. We also sought to provide a database for use in future validation of 
turbulence modelling and new experimental techniques, such as the nine-sensor 
velocity-vorticity probe of VukoslavCevi6, Wallace & Balint (1991) and PIV particle 
imaging techniques. We now present a brief summary of our results. 

After briefly outlining the mathematical formulation of the governing equations in 
the context of the spectral element method, the convergence properties of the 
method were examined. Exponential convergence was demonstrated for our flow 
solvers, and code validation results were presented. The computational domain used 
in the simulations was examined, and different mesh discretizations were compared 
to verify the choice of the resolution employed. Steady-state solutions for the entire 
laminar regime were computed and discussed ; it was shown that the velocity profile 
in the channel was inflexional inside the riblet valleys. Higher drag for the riblet wall 
was computed in the entire laminar regime, and the local distribution of skin friction 
inside the riblet valley was examined. An empirical average skin friction law was 
suggested for the triangular-riblet surface of the channel. The numerical procedures 
involving the transition to turbulence were discussed ; a laminar steady-state 
solution was perturbed and exponential growth resulted. This flow was then 
integrated through transition until a stationary turbulent state was reached. 
Stability studies for the flow over riblets and a more thorough investigation of the 
transitional regime were identified as important topics for future research. 

The low Reynolds number turbulent regime was investigated; a complete set of 
results was presented for a representative Reynolds number of Re = 3500. Similar to 
the laminar solutions, the turbulent mean velocity profile was also found to be 
inflexional in the riblet valleys ; excellent agreement was obtained between the 
computed smooth-wall profile in wall coordinates and the suggested ‘law of the wall ’ 
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relations. Various bulk flow properties were computed, and a comparison between 
the riblet wall and smooth wall was made, indicating consistency with the computed 
velocity profiles and drag reductions. Flow reversal was found to occur even in 
regions deep within the riblet valleys; this, along with our findings of turbulence 
intensity activity and peaks in the higher-order moments inside the riblet valleys, 
demonstrates the necessity of performing full Navier-Stokes simulations for 
turbulent flow over riblets. 

A full set of turbulence statistics was computed and presented for the 
representative case Re = 3500. In all cases good agreement between the computed 
smooth-wall values and other turbulent channel flow computational and ex- 
perimental results exists. Two-point correlations validated the size of the 
computational domain. Profiles of the r.m.s. velocities and Reynolds stress across the 
channel revealed that the riblets suppress all three components of the turbulence 
intensities (even at locations near the riblet tips), and result in significant Reynolds 
stress reductions. A quadrant analysis of the Reynolds stress field showed that the 
riblets shift the quadrant I1 and IV crossover point slightly farther away from the 
wall, and that there are increased contributions from quadrant I and I V  events very 
near the riblet wall. Temporal analyses were performed, including the use of the 
VITA technique for burst detection. It was found that a slight shift away from the 
wall occurred for the peak bursting location above the riblet wall, and that on 
average, the ejection events may have had a longer duration above the riblet wall. 
No change in the bursting frequency was detected from the VITA results. These 
temporal results, however, are preliminary ; further investigation in this area is 
required. Examination of the higher-order statistics demonstrated that high stress 
production events penetrated to locations even deep within the riblet valleys. Large 
values of S ( d )  were detected near the riblet tips, and increased intermittency was 
seen in the spanwise fluctuations near the riblet wall. These results are consistent 
with the activity seen in the instantaneous flow field examinations. 

The instantaneous flow field structure was examined by viewing the velocity, 
vorticity, and instantaneous Reynolds stress - pv’w’ fields throughout the domain at 
selected instants in time ; flow visualization movies were also used to investigate the 
time evolution of the organized structures in the flow. It was seen that the boundary 
layers near both smooth and riblet walls consisted of low-speed streak-like structures 
with associated ejection motions. Corresponding inrushing regions of high-speed fluid 
were observed. Together with different views showing the existence of counter- 
rotating streamwise vortices and other vortical structures in these areas and views 
of -pdw’ contours, it  was seen that these bursting and sweeping events were the 
primary activities responsible for positive turbulent stress production. 

All these findings, which were obtained using qualitative flow visualization 
methods, are consistent with the widely accepted model of longitudinally oriented 
vortices or hairpin vortex structures in the wall layers that produce the ejection and 
sweep events that effect turbulent momentum transfer (Robinson 1989 ; Wallace 
1982; Smith et al. 1989). Further comparison between the riblet-wall and smooth- 
wall events revealed some interesting differences. Basically, the presence of the 
riblets seems to inhibit the spanwise motions of the wall streaks (consistent with 
the increased intermittency results of the higher-order statistics examination) ; the 
lateral resistance offered by the riblets produces secondary flow and vortical 
structures in the riblet valleys which were clearly detected in the vorticity 
examinations. It has been hypothesized that the inhibition of the spanwise motions 
of the low-speed fluid in the riblet-wall region results in a decrease in the 
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‘effectiveness’ of the ejection events, see Bechert & Bartenwerfer (1989), Bacher & 
Smith (1985), Choi (1989), Smith et al. (1989), Luchini et al. (1991), thus leading to the 
reductions in Reynolds stress and drag that were obtained; all of our computed 
results are consistent with this drag reduction mechanism. 

Drag reduction for the riblet wall was reported in the transitional and turbulent 
regimes. At Re = 3500, the drag reduction was on the order of 6%. It was seen that, 
in the turbulent regime, the local skin friction distribution inside the riblet valley had 
the same general profile as in the laminar regime. Finally, results involving rounded 
riblets were presented. 

Various issues still remain open, and ongoing research addresses such topics as: 
stability and transition studies, more detailed temporal analyses, non-triangular 
riblets, more quantitative analyses of the turbulent flow structures and the effects of 
the riblets upon them, and extension to higher Reynolds number regimes. 
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